#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = 998244353;
// Maximum total count among test cases is <= 5e5.
const int MAXN = 500000;
vector<ll> fact(MAXN+1), invfact(MAXN+1);
// Fast exponentiation modulo mod.
ll modexp(ll base, ll exp, ll mod=MOD) {
ll res = 1;
base %= mod;
while(exp > 0) {
if(exp & 1)
res = (res * base) % mod;
base = (base * base) % mod;
exp >>= 1;
}
return res;
}
// Precompute factorials and inverse factorials up to MAXN.
void precomputeFactorials() {
fact[0] = 1;
for (int i = 1; i <= MAXN; i++) {
fact[i] = (fact[i-1] * i) % MOD;
}
invfact[MAXN] = modexp(fact[MAXN], MOD - 2, MOD);
for (int i = MAXN; i > 0; i--) {
invfact[i-1] = (invfact[i] * i) % MOD;
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
precomputeFactorials();
int t;
cin >> t;
while(t--){
vector<int> c(26);
ll total = 0;
for (int i = 0; i < 26; i++){
cin >> c[i];
total += c[i];
}
// Total length of string must be positive.
if(total == 0){
cout << 0 << "\n";
continue;
}
int oddCount = (total + 1) / 2; // positions: 1,3,5,...
int evenCount = total / 2; // positions: 2,4,6,...
// DP for subset-sum: For each letter (with c[i]>0), decide if it goes to odd positions.
// We need the sum of counts chosen to equal oddCount.
vector<ll> dp(oddCount+1, 0);
dp[0] = 1;
for (int i = 0; i < 26; i++){
if(c[i] <= 0) continue; // ignore letters that do not appear.
int cnt = c[i];
for (int j = oddCount; j >= cnt; j--){
dp[j] = (dp[j] + dp[j - cnt]) % MOD;
}
}
ll waysPartition = dp[oddCount] % MOD;
// If no valid partition exists, answer is 0.
if(waysPartition == 0){
cout << 0 << "\n";
continue;
}
// The arrangement factor is:
// (fact[oddCount] * fact[evenCount]) / (∏_{i=0}^{25} c[i]!)
ll arrangement = (fact[oddCount] * fact[evenCount]) % MOD;
for (int i = 0; i < 26; i++){
if(c[i] > 0){
arrangement = (arrangement * invfact[c[i]]) % MOD;
}
}
ll ans = (waysPartition * arrangement) % MOD;
cout << ans % MOD << "\n";
}
return 0;
}