import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
x= np.array ( [ [ 1 , 2 ] , [ 2 , 3 ] , [ 3 , 1 ] , [ 4 , 3 ] , [ 5 , 3 ] ] )
y= np.array ( [ 0 , 0 , 0 , 1 , 1 ] )
x_train, x_test, y_train, y_test= train_test_split( x, y, test_size= 0.2 , random_state= 42 )
model= LogisticRegression( )
model.fit ( x_train, y_train)
y_pred= model.predict ( x_test)
accuracy= accuracy_score( y_test, y_pred)
print ( "acurcy:" , accuracy)
aW1wb3J0IG51bXB5IGFzIG5wCmZyb20gc2tsZWFybi5saW5lYXJfbW9kZWwgaW1wb3J0IExvZ2lzdGljUmVncmVzc2lvbgpmcm9tIHNrbGVhcm4ubW9kZWxfc2VsZWN0aW9uIGltcG9ydCB0cmFpbl90ZXN0X3NwbGl0CmZyb20gc2tsZWFybi5tZXRyaWNzIGltcG9ydCBhY2N1cmFjeV9zY29yZQogCng9bnAuYXJyYXkoW1sxLDJdLFsyLDNdLFszLDFdLFs0LDNdLFs1LDNdXSkKeT1ucC5hcnJheShbMCwwLDAsMSwxXSkKIAp4X3RyYWluLHhfdGVzdCx5X3RyYWluLHlfdGVzdD10cmFpbl90ZXN0X3NwbGl0KHgseSx0ZXN0X3NpemU9MC4yLHJhbmRvbV9zdGF0ZT00MikgCm1vZGVsPUxvZ2lzdGljUmVncmVzc2lvbigpCm1vZGVsLmZpdCh4X3RyYWluLHlfdHJhaW4pCiAKeV9wcmVkPW1vZGVsLnByZWRpY3QoeF90ZXN0KQogCmFjY3VyYWN5PWFjY3VyYWN5X3Njb3JlKHlfdGVzdCx5X3ByZWQpCnByaW50KCJhY3VyY3k6IixhY2N1cmFjeSk=