fork download
  1. import numpy as np
  2. from sklearn.linear_model import LogisticRegression
  3. from sklearn.model_selection import train_test_split
  4. from sklearn.metrics import accuracy_score
  5.  
  6. x=np.array([[1,2],[2,3],[3,1],[4,3],[5,3]])
  7. y=np.array([0,0,0,1,1])
  8.  
  9. x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
  10. model=LogisticRegression()
  11. model.fit(x_train,y_train)
  12.  
  13. y_pred=model.predict(x_test)
  14.  
  15. accuracy=accuracy_score(y_test,y_pred)
  16. print("acurcy:",accuracy)
Success #stdin #stdout #stderr 0.33s 64632KB
stdin
Standard input is empty
stdout
('acurcy:', 0.0)
stderr
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)