import numpy as np
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
x=np.array([[1,2],[2,3],[3,1],[4,3],[5,3]])
y=np.array([5,6,8,9,11])
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
model=Ridge(alpha=0.5)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
accuracy=np.sqrt(mean_squared_error(y_test,y_pred))
print("Accuracy:",accuracy)
aW1wb3J0IG51bXB5IGFzIG5wCmZyb20gc2tsZWFybi5saW5lYXJfbW9kZWwgaW1wb3J0IFJpZGdlCmZyb20gc2tsZWFybi5tb2RlbF9zZWxlY3Rpb24gaW1wb3J0IHRyYWluX3Rlc3Rfc3BsaXQKZnJvbSBza2xlYXJuLm1ldHJpY3MgaW1wb3J0IG1lYW5fc3F1YXJlZF9lcnJvcgogCng9bnAuYXJyYXkoW1sxLDJdLFsyLDNdLFszLDFdLFs0LDNdLFs1LDNdXSkKeT1ucC5hcnJheShbNSw2LDgsOSwxMV0pCiAKeF90cmFpbix4X3Rlc3QseV90cmFpbix5X3Rlc3Q9dHJhaW5fdGVzdF9zcGxpdCh4LHksdGVzdF9zaXplPTAuMixyYW5kb21fc3RhdGU9NDIpCiAKbW9kZWw9UmlkZ2UoYWxwaGE9MC41KQptb2RlbC5maXQoeF90cmFpbix5X3RyYWluKQogCnlfcHJlZD1tb2RlbC5wcmVkaWN0KHhfdGVzdCkKIAphY2N1cmFjeT1ucC5zcXJ0KG1lYW5fc3F1YXJlZF9lcnJvcih5X3Rlc3QseV9wcmVkKSkKcHJpbnQoIkFjY3VyYWN5OiIsYWNjdXJhY3kp