fork download
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. // We'll compute the cycle decomposition of the original permutation p (1-indexed)
  5. int main(){
  6. ios::sync_with_stdio(false);
  7. cin.tie(nullptr);
  8.  
  9. int t;
  10. cin >> t;
  11. while(t--){
  12. int n;
  13. cin >> n;
  14. vector<int> p(n+1);
  15. for (int i = 1; i <= n; i++){
  16. cin >> p[i];
  17. }
  18. vector<int> d(n+1);
  19. for (int i = 1; i <= n; i++){
  20. cin >> d[i];
  21. }
  22.  
  23. // --- Step 1. Compute cycle decomposition of p.
  24. // cycleId[i] = the id (1-indexed) of the cycle to which index i belongs.
  25. // cycleSize[id-1] will store the size of that cycle.
  26. vector<int> cycleId(n+1, 0);
  27. vector<int> cycleSize;
  28. int cid = 0;
  29. vector<bool> visited(n+1, false);
  30. for (int i = 1; i <= n; i++){
  31. if(!visited[i]){
  32. cid++;
  33. int cur = i;
  34. int cnt = 0;
  35. while(!visited[cur]){
  36. visited[cur] = true;
  37. cycleId[cur] = cid;
  38. cnt++;
  39. cur = p[cur];
  40. }
  41. cycleSize.push_back(cnt);
  42. }
  43. }
  44.  
  45. // --- Step 2. Reverse simulation.
  46. // In the forward process we “remove” entries one by one.
  47. // In the reverse process we start with an all-zero array and “restore” entries in the reverse order.
  48. // In the final fixed array (the original permutation) the cost (i.e. minimal operations needed)
  49. // is 0. In the reverse simulation, if we have restored k indices then:
  50. // cost = (n - k) + (for each cycle C: if (restored in C) < |C| then (restored in C) else 0).
  51. //
  52. // Let F[k] be the cost when exactly k indices are restored.
  53.  
  54. vector<long long> F(n+1, 0);
  55. int activeCount = 0; // number of restored indices
  56. long long currCost = n; // initially, no index is restored so cost = n (all indices missing)
  57. F[0] = currCost;
  58.  
  59. // For each cycle (by id) we track how many indices have been restored.
  60. vector<int> cntCycle(cid+1, 0);
  61.  
  62. // Process “adding back” indices in the reverse order of removals.
  63. // d[1..n] gives the removal order; so we add in reverse: d[n], d[n-1], ..., d[1].
  64. for (int i = 1; i <= n; i++){
  65. int pos = d[n - i + 1]; // index we are restoring
  66. activeCount++;
  67. int cyc = cycleId[pos];
  68.  
  69. // In cycle cyc, let old = (number restored before) and new = old+1.
  70. int oldCount = cntCycle[cyc];
  71. int newCount = oldCount + 1;
  72.  
  73. // When we add one element:
  74. // (i) the missing count (n - activeCount) decreases by 1,
  75. // (ii) and the contribution for cycle cyc changes from:
  76. // prev = (oldCount if oldCount < cycleSize else 0)
  77. // to new = (newCount if newCount < cycleSize else 0).
  78. currCost -= 1; // decrease in missing count
  79. int cycleTotal = cycleSize[cyc - 1];
  80. int prevContribution = (oldCount < cycleTotal ? oldCount : 0);
  81. int newContribution = (newCount < cycleTotal ? newCount : 0);
  82. currCost += (newContribution - prevContribution);
  83.  
  84. cntCycle[cyc] = newCount;
  85.  
  86. F[activeCount] = currCost;
  87. }
  88.  
  89. // --- Step 3. Answering queries.
  90. // In the reverse simulation, F[k] is the answer (minimal operations needed)
  91. // when k indices are restored. But note that if k indices are restored,
  92. // then (n-k) indices were removed in the forward process.
  93. // So for query i (i from 1 to n: i removals) the answer equals F[n-i].
  94. vector<long long> ans(n+1, 0);
  95. for (int i = 1; i <= n; i++){
  96. int ac = n - i; // number of restored indices in the corresponding reverse state
  97. ans[i] = F[ac];
  98. }
  99.  
  100. // Output the answer for the current test case.
  101. // (We output n numbers: the i-th is the answer after i removals.)
  102. for (int i = 1; i <= n; i++){
  103. cout << ans[i] << (i==n ? "\n" : " ");
  104. }
  105. }
  106. return 0;
  107. }
  108.  
Success #stdin #stdout 0.01s 5296KB
stdin
3
3
1 2 3
3 2 1
5
4 5 3 1 2
4 5 1 3 2
7
4 3 1 2 7 5 6
1 2 3 4 5 6 7
stdout
1 2 3
2 4 4 5 5
4 4 4 4 7 7 7