fork download
  1. import numpy as np
  2. from sklearn.linear_model import Ridge
  3. from sklearn.model_selection import train_test_split
  4. from sklearn.metrics import mean_squared_error
  5.  
  6. x=np.array([[1,2],[2,3],[3,1],[4,3],[5,3]])
  7. y=np.array([2,4,7,8,11])
  8.  
  9. x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
  10.  
  11. model=Ridge(alpha=5)
  12. model.fit(x_train,y_train)
  13.  
  14. y_pred=model.predict(x_test)
  15.  
  16. accuracy=np.sqrt(mean_squared_error(y_test,y_pred))
  17. print("Accuracy:",accuracy)
  18.  
Success #stdin #stdout 0.33s 64716KB
stdin
Standard input is empty
stdout
('Accuracy:', 1.4393939393939394)